Genomic imprinting at the WT1 gene involves a novel coding transcript (AWT1) that shows deregulation in Wilms' tumours.

نویسندگان

  • Anthony R Dallosso
  • Anne L Hancock
  • Keith W Brown
  • Ann C Williams
  • Sally Jackson
  • Karim Malik
چکیده

The Wilms' tumour suppressor gene, WT1, is mutated in 10-15% of Wilms' tumours and encodes zinc-finger proteins with diverse cellular functions critical for nephrogenesis, genitourinary development, haematopoiesis and sex determination. Here we report that a novel alternative WT1 transcript, AWT1, is co-expressed with WT1 in renal and haematopoietic cells. AWT1 maintains WT1 exonic structure between exons 2 and 10, but deploys a new 5'-exon located in intron 1 of WT1. The AWT1 gene predicts proteins of approximately 33 kDa, comprising all exon 5 and exon 9 splicing variants previously characterized for WT1. Although WT1 is not genomically imprinted in kidney, we have previously shown monoallelic expression of a WT1 antisense transcript (WT1-AS) that is consistent with genomic imprinting. Here we demonstrate that both WT1-AS and the novel AWT1 transcript are imprinted in normal kidney with expression confined to the paternal allele. Wilms' tumours display biallelic AWT1 expression, indicating relaxation of imprinting of AWT1 in a subset of WTs. Our findings define human chromosome 11p13 as a new imprinted locus, and also suggest a possible molecular basis for the strong bias of paternal allele mutations and variable penetrance observed in syndromes with inherited WT1 mutations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A CTCF-binding silencer regulates the imprinted genes AWT1 and WT1-AS and exhibits sequential epigenetic defects during Wilms' tumourigenesis.

We have shown previously that AWT1 and WT1-AS are functionally imprinted in human kidney. In the adult kidney, expression of both transcripts is restricted to the paternal allele, with the silent maternal allele retaining methylation at the WT1 antisense regulatory region (WT1 ARR). Here, we report characterization of the WT1 ARR differentially methylated region and show that it contains a tran...

متن کامل

Frequency and timing of loss of imprinting at 11p13 and 11p15 in Wilms' tumor development.

Epigenetic changes occur frequently in Wilms' tumor (WT), especially loss of imprinting (LOI) of IGF2/H19 at 11p15. Our previous results have identified imprinted transcripts (WT1-AS and AWT1) from the WT1 locus at 11p13 and showed LOI of these in some WTs. In this article, we set out to test the relationship between LOI at 11p13 and 11p15 and their timing in WT progression relative to other ge...

متن کامل

Identification of differential methylation of the WT1 antisense regulatory region and relaxation of imprinting in Wilms' tumor.

Wilms' tumor (WT) is associated with loss of heterozygosity at chromosome 11p13, the site of the Wilms' tumor suppressor gene, WT1. Although the preferential loss of maternal alleles suggested that differential allelic expression of WT1 might occur, this has not been evident in normal fetal tissues or WTs. In this study, we show that the WT1 antisense regulatory region is differentially methyla...

متن کامل

Imprinting, expression, and localisation of DLK1 in Wilms tumours.

BACKGROUND Loss of imprinting (LOI) of the H19/IGF2 domain is a common feature of Wilms tumour. The GTL2/DLK1 domain is also imprinted and is structurally similar to H19/IGF2. The question arises as to whether DLK1 also undergoes LOI in Wilms tumour, or whether the LOI mechanism is restricted to the H19/IGF2 domain. AIM To investigate the imprinting status of DLK1 in Wilms tumours with IGF2 L...

متن کامل

Hypermethylation of the alternative AWT1 promoter in hematological malignancies is a highly specific marker for acute myeloid leukemias despite high expression levels

BACKGROUND Wilms tumor 1 (WT1) is over-expressed in numerous cancers with respect to normal cells, and has either a tumor suppressor or oncogenic role depending on cellular context. This gene is associated with numerous alternatively spliced transcripts, which initiate from two different unique first exons within the WT1 and the alternative (A)WT1 promoter intervals. Within the hematological sy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 13 4  شماره 

صفحات  -

تاریخ انتشار 2004